Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.231
Filtrar
1.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607042

RESUMO

Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.


Assuntos
Filamentos Intermediários , Doenças Musculares , Animais , Desmina/genética , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Músculos/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Mutação
2.
Mol Genet Genomic Med ; 12(4): e2432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588043

RESUMO

OBJECTIVE: To analyze the clinical and genetic characteristics of a patient with Polyglucosan body myopathy 1 (PGBM1) caused by a novel compound heterozygous variant in the RBCK1 gene. METHODS: The clinical data of the patient were collected, next-generation sequencing technology was used to determine the exome sequence of the patient, and the suspected pathogenic locus was verified by Sanger sequencing. RESULTS: Through whole-exome sequencing, we found that there were c.919G>T; p. (Glu307*) and c.723_730dup; p. (Glu244fs) variants of the RBCK1 gene in the patient, inherited from his parents, constituting a compound heterozygous variation. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), the two variants were rated as pathogenic, but there were no comparable cases. Previous literature reported 24 patients with RBCK1 gene variants, involving a total of 20 myocardial and 18 skeletal muscle cases. CONCLUSIONS: The patient was twice diagnosed with cardiac insufficiency, neglecting the usual manifestations of muscle weakness, resulting in misdiagnosis. Later, novel variants in the RBCK1 gene were discovered through whole-exome sequencing, and symptomatic treatment was given after diagnosis. The importance of whole-exome sequencing technology in disease diagnosis and genetic counseling was emphasized.


Assuntos
Doenças Musculares , Humanos , Doenças Musculares/genética , Glucanos , Músculo Esquelético , Miocárdio , Fatores de Transcrição , Ubiquitina-Proteína Ligases
3.
Brain Nerve ; 76(4): 375-386, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38589282

RESUMO

Many muscle disease names are mostly based on muscle pathology findings. Naturally, muscle pathology is important in the diagnosis of muscle diseases. Moreover, in recent years, extensive genetic analysis and autoantibody testing for myositis have been applied clinically, although muscle biopsies are less performed. However, muscle pathology should be proactively considered when a single gene presents multiple phenotypes, when variants of unknown pathological significance are detected, or in cases of autoimmune myositis that may be misdiagnosed as muscular dystrophy.


Assuntos
Doenças Autoimunes , Doenças Musculares , Distrofias Musculares , Miosite , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Distrofias Musculares/patologia , Músculos/patologia , Músculo Esquelético/patologia
4.
Commun Biol ; 7(1): 438, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600180

RESUMO

Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/metabolismo , RNA/metabolismo
5.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
6.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429495

RESUMO

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Peixe-Zebra/genética
7.
Cell Rep Med ; 5(3): 101462, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508147

RESUMO

Selenoprotein N-related myopathy (SEPN1-RM) is a genetic disease that causes muscle weakness and respiratory failure. Germani et al.1 demonstrate that diaphragm weakness in SEPN1-RM is prevented by the inhibition of ER stress or ERO1 oxidoreductase regulated by transcription factor CHOP.


Assuntos
Doenças Musculares , Insuficiência Respiratória , Humanos , Proteínas Musculares/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , Doenças Musculares/genética , Doenças Musculares/terapia , Estresse Oxidativo/genética
8.
Rev Neurol ; 78(7): 179-183, 2024 Apr 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38502166

RESUMO

INTRODUCTION: Ryanodine receptor type 1-related myopathies (RYR1-RM) represent the most prevalent category of congenital myopathies. The introduction of genetic techniques has shifted the diagnostic paradigm, suggesting the prioritization of molecular studies over biopsies. This study aims to explore the clinical and epidemiological characteristics of patients with RYR1 gene variants in a tertiary pediatric hospital, intending to enhance the understanding of the genotype-phenotype correlation in RYR1-RM. PATIENTS AND METHODS: An observational, descriptive, and cross-sectional study was conducted on patients under 14 years old with myopathic symptoms and potentially pathogenic RYR1 gene variants from January 2013 to December 2023. Variables such as gender, age, motor development, genetic variants, inheritance pattern, and other manifestations were considered. All variables were tabulated against the genetic variant. RESULTS: Of the nine included patients, the estimated incidence was approximately 1 in 10,000 live births. The median age at diagnosis was six years, with significant phenotypic variability. Common symptoms such as weakness and delayed motor development were observed. Genetic variants affected the RYR1 gene diversely, including five previously undescribed variants. Muscle biopsy was performed in five patients, revealing central core myopathy in two, multiminicore in one, congenital fiber-type disproportion in one, and a nonspecific pattern in another. CONCLUSIONS: RYR1-RM in our series exhibited phenotypic and involvement variability, with an incidence in our area of around 1 in 10,000 live births. Most cases were male, with dominant missense variants. We contribute five previously undescribed genetic variants.


TITLE: Miopatías RYR1 en la infancia: correlación fenotipo-genotipo e incidencia.Introducción. Las miopatías relacionadas con el receptor de rianodina de tipo 1 (RYR1-RM) constituyen la categoría más frecuente de miopatías congénitas. La introducción de técnicas genéticas ha cambiado el paradigma diagnóstico y sugiere la prioridad de estudios moleculares sobre biopsias. Este estudio busca explorar las características clinicoepidemiológicas de pacientes con variantes del gen RYR1 en un hospital pediátrico de tercer nivel con el objetivo de ampliar la comprensión de la correlación genotipo-fenotipo en las RYR1-RM. Pacientes y métodos. Estudio observacional, descriptivo y transversal, de pacientes menores de 14 años con síntomas miopáticos y variantes potencialmente patógenas del gen RYR1 entre enero de 2013 y diciembre de 2023, considerando variables como sexo, edad, desarrollo motor, variantes genéticas, patrón de herencia y otras manifestaciones. Todas las variables fueron tabuladas frente a la variante genética. Resultados. De los nueve pacientes incluidos, la incidencia estimada fue de aproximadamente 1/10.000 nacidos vivos. La mediana en el momento del diagnóstico fue de 6 años, con una variabilidad fenotípica significativa. Se observaron síntomas comunes, como debilidad y retraso del desarrollo motor. Las variantes genéticas afectaron al gen RYR1 de manera diversa, y hubo cinco variantes previamente no descritas. La biopsia muscular se realizó en cinco pacientes, en dos de ellos de tipo miopatía central core; en uno, multiminicore; en uno, desproporción congénita de fibras; y en otro, de patrón inespecífico. Conclusiones. Las RYR1-MR de nuestra serie ofrecieron variabilidad fenotípica y de afectación, con una incidencia en nuestra área de en torno a 1/10.000 recién nacidos. La mayoría de los casos fueron varones, de variantes missense dominantes. Aportamos cinco variantes genéticas no descritas con anterioridad.


Assuntos
Doenças Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Masculino , Criança , Adolescente , Feminino , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Estudos Transversais , Incidência , Doenças Musculares/epidemiologia , Doenças Musculares/genética , Estudos de Associação Genética , Fenótipo , Genótipo
9.
Neurology ; 102(7): e209258, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38484275

RESUMO

We describe the case of a 19-month-old girl presenting with gross motor delays, hypotonia, diminished deep tendon reflexes, hyperCKaemia, extensive white matter changes on MRI brain, and electromyography studies consistent with myopathy. The differential diagnosis for infantile-onset hypotonia and muscle weakness is broad. It includes numerous subtypes of genetic disorders, including congenital muscular dystrophies, congenital myopathies, congenital myasthenic syndromes, spinal muscular atrophy, single-gene genetic syndromes, and inborn errors of metabolism. We outline our clinical approach leading to the diagnosis of a distinctive genetic neuromuscular condition essential for neurologists and geneticists working with patients of all ages to recognize.


Assuntos
Doenças Musculares , Distrofias Musculares , Substância Branca , Feminino , Humanos , Lactente , Hipotonia Muscular/etiologia , Substância Branca/diagnóstico por imagem , Doenças Musculares/genética , Distrofias Musculares/genética , Raciocínio Clínico
10.
Neuromuscul Disord ; 37: 1-5, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430701

RESUMO

This report describes a novel TTN -related phenotype in two brothers, both affected by a childhood onset, very slowly progressive myopathy with cores, associated with dilated cardiomyopathy only in their late disease stages. Clinical exome sequencing documented in both siblings the heterozygous c.2089A>T and c.19426+2T>A variants in TTN. The c.2089A>T, classified in ClinVar as possibly pathogenic, introduces a premature stop codon in exon 14, whereas the c.19426+2T>A affects TTN alternative splicing. The unfeasibility of segregation studies prevented us from establishing the inheritance mode of the muscle disease in this family, although the lack of any reported muscle or heart symptoms in both parents might support an autosomal recessive transmission. In this view, the occurrence of cardiomyopathy in both probands might be related to the c.2089A>T truncating variant in exon 14, and the childhood onset, slowly progressive myopathy to the c.19426+2T>A splicing variant, possibly allowing translation of an almost full length TTN protein.


Assuntos
Cardiomiopatia Dilatada , Doenças Musculares , Masculino , Humanos , Criança , Conectina/genética , Doenças Musculares/genética , Fenótipo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Códon sem Sentido , Mutação
11.
Neurology ; 102(5): e209164, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373275

RESUMO

Brody disease is a rare autosomal recessive myopathy, caused by pathogenic variants in the ATP2A1 gene. It is characterized by an exercise-induced delay in muscle relaxation, often reported as muscle stiffness. Children may manifest with an abnormal gait and difficulty running. Delayed relaxation is commonly undetected, resulting in a long diagnostic delay. Almost all published cases so far were adults with childhood onset and adult diagnosis. With diagnostic next-generation sequencing, an increasing number of patients are diagnosed in childhood. We describe the clinical and genetic features of 9 children from 6 families with Brody disease. All presented with exercise-induced delayed relaxation, reported as difficulty running and performing sports. Muscle strength and mass was normal, and several children even had an athletic appearance. However, the walking and running patterns were abnormal. The diagnostic delay ranged between 2 and 7 years. Uniformly, a wide range of other disorders were considered before genetic testing was performed, revealing pathogenic genetic variants in ATP2A1. To conclude, this case series is expected to improve clinical recognition and timely diagnosis of Brody disease in children. We propose that ATP2A1 should be added to gene panels for congenital myopathies, developmental and movement disorders, and muscle channelopathies.


Assuntos
Transtornos dos Movimentos , Doenças Musculares , Miotonia Congênita , Adulto , Criança , Humanos , Diagnóstico Tardio , Mutação/genética , Doenças Musculares/genética , Marcha
12.
Ann Clin Transl Neurol ; 11(3): 629-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311799

RESUMO

OBJECTIVE: ACTN2, encoding alpha-actinin-2, is essential for cardiac and skeletal muscle sarcomeric function. ACTN2 variants are a known cause of cardiomyopathy without skeletal muscle involvement. Recently, specific dominant monoallelic variants were reported as a rare cause of core myopathy of variable clinical onset, although the pathomechanism remains to be elucidated. The possibility of a recessively inherited ACTN2-myopathy has also been proposed in a single series. METHODS: We provide clinical, imaging, and histological characterization of a series of patients with a novel biallelic ACTN2 variant. RESULTS: We report seven patients from five families with a recurring biallelic variant in ACTN2: c.1516A>G (p.Arg506Gly), all manifesting with a consistent phenotype of asymmetric, progressive, proximal, and distal lower extremity predominant muscle weakness. None of the patients have cardiomyopathy or respiratory insufficiency. Notably, all patients report Palestinian ethnicity, suggesting a possible founder ACTN2 variant, which was confirmed through haplotype analysis in two families. Muscle biopsies reveal an underlying myopathic process with disruption of the intermyofibrillar architecture, Type I fiber predominance and atrophy. MRI of the lower extremities demonstrate a distinct pattern of asymmetric muscle involvement with selective involvement of the hamstrings and adductors in the thigh, and anterior tibial group and soleus in the lower leg. Using an in vitro splicing assay, we show that c.1516A>G ACTN2 does not impair normal splicing. INTERPRETATION: This series further establishes ACTN2 as a muscle disease gene, now also including variants with a recessive inheritance mode, and expands the clinical spectrum of actinopathies to adult-onset progressive muscle disease.


Assuntos
Cardiomiopatias , Doenças Musculares , Adulto , Humanos , Doenças Musculares/genética , Doenças Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Actinina/genética , Fenótipo
13.
Arq Neuropsiquiatr ; 82(2): 1-4, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38395422

RESUMO

Carnitine palmitoyltransferase II (CPT II) deficiency is an autosomal recessive inherited disorder related to lipid metabolism affecting skeletal muscle. The first cases of CPT II deficiency causing myopathy were reported in 1973. In 1983, Werneck et al published the first two Brazilian patients with myopathy due to CPT II deficiency, where the biochemical analysis confirmed deficient CPT activity in the muscle of both cases. Over the past 40 years since the pioneering publication, clinical phenotypes and genetic loci in the CPT2 gene have been described, and pathogenic mechanisms have been better elucidated. Genetic analysis of one of the original cases disclosed compound heterozygous pathogenic variants (p.Ser113Leu/p.Pro50His) in the CPT2 gene. Our report highlights the historical aspects of the first Brazilian publication of the myopathic form of CPT II deficiency and updates the genetic background of this pioneering publication.


Deficiência de carnitina palmitoiltransferase II (CPT II) é uma desordem de herança autossômica recessiva relacionada com o metabolismo do lipídio afetando músculo esquelético. Os primeiros dois casos de deficiência de CPT II causando miopatia foram relatados em 1973. Em 1983, Werneck et al. publicaram os primeiros pacientes brasileiros com miopatia por deficiência de CPT II, nos quais a análise bioquímica confirmou a atividade deficiente da CPT nos músculos em ambos os casos. Após 40 anos desde a publicação pioneira, fenótipos clínicos e loci genético no gene CPT2 foram descritos, bem com os mecanismos patológicos foram melhor elucidados. A análise genética de um dos casos da publicação original apresentou variantes patogênicas em heterozigose composta (p.Ser113Leu/p.Pro50His) no gene CPT2. O nosso relato destaca os aspectos históricos da primeira publicação brasileira da forma miopática da deficiência de CPT II e atualiza as bases genéticas dessa publicação pioneira.


Assuntos
Carnitina O-Palmitoiltransferase/deficiência , Erros Inatos do Metabolismo , Doenças Musculares , Humanos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Brasil , Doenças Musculares/genética , Doenças Musculares/patologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Mutação
14.
Sci Rep ; 14(1): 3450, 2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342952

RESUMO

This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.


Assuntos
Doenças Musculares , Miosite , Doenças das Aves Domésticas , Animais , Galinhas/genética , Galinhas/metabolismo , Metabolismo dos Lipídeos/genética , Doenças Musculares/genética , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Perfilação da Expressão Gênica , Músculos Peitorais/patologia , Miosite/metabolismo , Lipídeos , Doenças das Aves Domésticas/genética
15.
Cell Rep Med ; 5(3): 101439, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38402623

RESUMO

Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.


Assuntos
Proteínas Musculares , Doenças Musculares , Humanos , Camundongos , Animais , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética , Doenças Musculares/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Oxirredutases , Camundongos Knockout
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 59-66, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171561

RESUMO

OBJECTIVE: To explore the correlation between clinical classification and genotype and prognosis among Chinese children with Very-long chain acyl-CoA dehydrogenase deficiency (VLCADD). METHODS: A Chinese pedigree affected with VLCADD admitted at the First People's Hospital of Yunnan Province in February 2019 was selected as the study subject. The characteristics of disease onset, diagnosis and treatment and prognosis were retrospectively analyzed. Relevant literature was also systematically searched and reviewed. RESULTS: The proband, a 1-year-old boy, had the clinical manifestations of frequently vomiting, hypoglycemia, abnormal liver function and myocardial enzymes. Tandem mass spectrometry screening showed significantly elevated C14, C14:1, C16:1, C16:2, C18 and C14/C8. Genetic testing revealed that he has harbored compound heterozygous variants of the ACADVL gene, namely c.664G>A (p.G222R) and c.1345G>A (p.E449K), which were respectively derived from his father and mother. The child was diagnosed with VLCADD cardiomyopathy type and deceased 2 weeks later. Literature review has identified 60 Chinese children with VLCADD. The clinical classifications were mainly cardiomyopathy type and liver disease type, which accounted for 73.3% (43/60). The combination of ACADVL gene variants were correlated with the clinical classifications of VLCAD. Children with one or two loss-of-function (LOF) mutations showed more severe clinical manifestation and a higher mortality. Cardiomyopathy type had the poorest prognosis, with a mortality rate of 76.9% (20/26). C14:1 may be used as an indicator for the diagnosis of VLCADD, but cannot be used for clinical subtyping and prognosis evaluation. The c.1349G>A (p.R450H) variant had the highest frequency among the Chinese patients, accounting for 10.8% (13/120). CONCLUSION: The clinical classifications of VLCADD are strongly correlated with the prognosis, and LOF mutations are more common in those with severe clinical manifestations. c.1349G>A (p.R450H) may be the most common variant among the Chinese patients, and early screening and diagnosis can greatly improve the prognosis of patients.


Assuntos
Cardiomiopatias , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Criança , Humanos , Lactente , Masculino , Cardiomiopatias/genética , China , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Linhagem , Estudos Retrospectivos
18.
BMC Cardiovasc Disord ; 24(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166572

RESUMO

BACKGROUND: Primary carnitine deficiency (PCD) denotes low carnitine levels with an autosomal recessive pattern of inheritance. Cardiomyopathy is the most common cardiac symptom in patients with PCD, and early diagnosis can prevent complications. Next-generation sequencing can identify genetic variants attributable to PCD efficiently. OBJECTIVE: We aimed to detect the genetic cause of the early manifestations of hypertrophic cardiomyopathy and metabolic abnormalities in an Iranian family. METHODS: We herein describe an 8-year-old boy with symptoms of weakness and lethargy diagnosed with PCD through clinical evaluations, lab tests, echocardiography, and cardiac magnetic resonance imaging. The candidate variant was confirmed through whole-exome sequencing, polymerase chain reaction, and direct Sanger sequencing. The binding efficacy of normal and mutant protein-ligand complexes were evaluated via structural modeling and docking studies. RESULTS: Clinical evaluations, echocardiography, and cardiac magnetic resonance imaging findings revealed hypertrophic cardiomyopathy as a clinical presentation of PCD. Whole-exome sequencing identified a new homozygous variant, SLC22A5 (NM_003060.4), c.821G > A: p.Trp274Ter, associated with carnitine transport. Docking analysis highlighted the impact of the variant on carnitine transport, further indicating its potential role in PCD development. CONCLUSIONS: The c.821G > A: p.Trp274Ter variant in SLC22A5 potentially acted as a pathogenic factor by reducing the binding affinity of organic carnitine transporter type 2 proteins for carnitine. So, the c.821G > A variant may be associated with carnitine deficiency, metabolic abnormalities, and cardiomyopathic characteristics.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Hiperamonemia , Doenças Musculares , Masculino , Humanos , Criança , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Carnitina/genética , Carnitina/metabolismo , Irã (Geográfico) , Membro 5 da Família 22 de Carreadores de Soluto/genética , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Hiperamonemia/complicações , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/complicações , Mutação
19.
Poult Sci ; 103(3): 103398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194832

RESUMO

Previous work has shown that dietary treatments affect woody breast (WB) incidence differently, which indicates that gut conditions such as gut barrier function, inflammation, and oxidative stress are likely related to WB. In this study, dietary supplementation with antibiotics (bacitracin) or probiotics (Bacillus subtilis) was investigated for their effects on the expression of transcripts related to gut barrier function, inflammation, and oxidative stress in the mucus lining of the jejunum from broilers with or without WB. A split-plot experimental design was used in this study. The dietary treatments served as the main plot factor and the breast muscle condition was the subplot factor. On d 41, jejunum mucus was collected from 1 bird from each of 3 replicate pens in each 3 dietary treatment groups that exhibited WB and an additional bird that contained a normal breast (3 biological replicates/treatment/phenotype; 3 × 3 × 2, total N = 18). Total RNA was extracted using a commercial RNA extraction kit. The expression levels of CLDN1, MUC6, TLR2A, TLR2B, TLR4, IFN-γ, IL-1ß, IL-8L1, IL-10, NOS2, and SOD were determined using 2-step RT-qPCR analysis. The gene expression difference in ΔCt values was determined after normalizing with the chicken 18S rRNA gene. When the significant differences occurred between treatments, the relative fold change was calculated using the ΔΔCt method and the significance level was calculated. The PROC GLM procedure of SAS 9.4 was used, and the level of significance was set at P ≤ 0.05. There were no significant interactive effects between diet and the breast muscle condition on the expression of any of the genes tested. However, birds with WB exhibited higher MUC6 (P < 0.0001) gene expression levels than birds with normal breast muscles. In addition, the expression of SOD decreased in birds that were fed the antibiotic diet when compared to birds that were fed the probiotic diet (P = 0.014). In conclusion, WB identified in broilers tested in the current study is attributed to increased expression of mucin, indicating a correlation between WB incidence and gel-forming mucin secretion and pathogen signaling.


Assuntos
Galinhas , Doenças Musculares , Animais , Galinhas/genética , Doenças Musculares/genética , Doenças Musculares/veterinária , Muco , Antibacterianos , Inflamação/veterinária , Mucinas , Expressão Gênica , RNA , Superóxido Dismutase
20.
Arch Biochem Biophys ; 752: 109881, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185233

RESUMO

Tropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca2+ activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and ß, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γß-heterodimers, or ßß-homodimers, and a majority of the molecules are present as γß-Tpm heterodimers. Point mutation R91P within the TPM3 gene encoding γ-Tpm is linked to the condition known as congenital fiber-type disproportion (CFTD), which is characterized by severe muscle weakness. Here, we investigated the influence of the R91P mutation in the γ-chain on the properties of the γß-Tpm heterodimer. We found that the R91P mutation impairs the functional properties of γß-Tpm heterodimer more severely than those of earlier studied γγ-Tpm homodimer carrying this mutation in both γ-chains. Since a significant part of Tpm molecules in slow skeletal muscle is present as γß-heterodimers, our results explain why this mutation leads to muscle weakness in CFTD.


Assuntos
Doenças Musculares , Tropomiosina , Humanos , Tropomiosina/química , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Debilidade Muscular/metabolismo , Actinas/genética , Actinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...